Fall vortex ozone as a predictor of springtime total ozone at high northern latitudes

نویسندگان

  • S. R. Kawa
  • P. A. Newman
  • R. S. Stolarski
  • R. M. Bevilacqua
چکیده

Understanding the impact of atmospheric dynamical variability on observed changes in stratospheric O3 is a key to understanding how O3 will change with future climate dynamics and trace gas abundances. In this paper we examine the linkage between interannual variability in total column O3 at northern high latitudes in March and lower-tomid stratospheric vortex O3 in the prior November. We find that these two quantities are significantly correlated in the years available from TOMS, SBUV, and POAM data (1978– 2004). Additionally, we find that the increase in March O3 variability from the 1980s to years post-1990 is also seen in the November vortex O3, i.e., interannual variability in both quantities is much larger in the later years. The cause of this correlation is not clear, however. Interannual variations in March total O3 are known to correspond closely with variations in winter stratospheric wave driving consistent with the effects of varying residual circulation, temperature, and chemical loss. Variation in November vortex O3 may also depend on dynamical wave activity, but the dynamics in fall are less variable than in winter and spring. We do not find significant correlations of dynamic indicators for November such as temperature, heat flux, or polar average total O3 with the November vortex O3, nor with dynamical indicators later in winter and spring that might lead to a connection to March. We discuss several potential hypotheses for the observed correlation but do not find strong evidence for any considered mechanism. We present the observations as a phenomenon whose understanding may improve our ability to predict the dependence of O3 on changing dynamics and chemistry. Correspondence to: S. R. Kawa ([email protected])

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Summertime total ozone variations over middle and polar latitudes

[1] The statistical relationship between springtime and summertime ozone over middle and polar latitudes is analyzed using zonally averaged total ozone data. Shortterm variations in springtime midlatitude ozone demonstrate only a modest correlation with springtime polar ozone variations. However by early summer, ozone variations throughout the extratropics are highly correlated. Analysis of cor...

متن کامل

Low ozone concentrations over Macquarie Island during 1997 Part I: trajectory analysis

Ozone concentrations have been decreasing globally for the last 20 years in part due to increasing chlorine concentrations in the stratosphere (WMO 1999). The most dramatic example of these reductions has been identified in the high latitude southern hemisphere, where ozone levels are nearly entirely depleted in the lower stratosphere during September and October each year. This phenomenon, whi...

متن کامل

Change in ozone trends at southern high latitudes

[1] Long-term ozone variations at 60–70 S in spring are investigated using ground-based and satellite measurements. Strong positive correlation is shown between year-to-year variations of ozone and temperature in the Antarctic collar region in Septembers and Octobers. Based on this relationship, the effect of year-to-year variations in vortex dynamics has been filtered out. This process results...

متن کامل

On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes

We present the first spatial analysis of “fingerprints” of the El Niño/Southern Oscillation (ENSO) and atmospheric aerosol load after major volcanic eruptions (El Chichón and Mt. Pinatubo) in extreme low and high (termed ELOs and EHOs, respectively) and mean values of total ozone for the northern and southern mid-latitudes (defined as the region between 30 and 60 north and south, respectively)....

متن کامل

Global simulation of tropospheric O 3 -NO x -hydrocarbon chemistry: 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons

A global three-dimensional model of tropospheric O3-NOx-hydrocarbon chemistry is used to investigate the factors controlling ozone concentrations in the troposphere. Model results indicate a close balance between chemical production and chemical loss of ozone in the tropospheric column at all latitudes (except high latitudes in winter). Using separate tracers for ozone produced in the stratosph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005